This is inspired by Todd's response after Ramon's meeting on: _ + =
Todd's use of addition tables to create solutions got me thinking about a visual pattern based on triangles and squares.

The addition tables show solutions to _+ _ = for different number of possible digits (n). For example, when we are allowed only the first 3 digits (1, 2, 3), 1+2 $=3$ is the only solution. When we are allowed only the first 4 digits $(1,2,3,4), 1+2=3$ and $1+3=4$ are only two solutions.

Here are the solutions shown:

n	$f(n)$
3	1
4	2
5	4
6	6
7	9
8	12
9	16

I noticed a couple things when looking at the numbers here. The solutions for odd n's are square numbers: $1,4,9,16$. I also saw triangular numbers in odd and even n's. As a reminder, triangular numbers are quantities that can be arranged as triangles:
$\bullet \bullet \bullet \bullet \bullet(1,3,6,10, \ldots)$
The solutions for even n's are 2 times the triangular numbers: 2(1), 2(3), 2(6), etc.

I wondered about the shape of solutions in the addition tables. I saw pyramids, which I flipped over in order to see a visual pattern. For example, these are the solutions for $\mathrm{n}=7$:

The bottom row shows the shape of the solutions, flipped upside down. The top row shows the same solutions, reshuffled to make a square or a (non-square) rectangle. Both the squares and the rectangles are made of triangles.

Here is the top row again, with the number of solutions shown as well as the dimensions of the figure: $1 \times 1,1 \times 2,2 \times 2,2 \times 3,3 \times 3$, etc.

When I look at this visual pattern, I see the dimensions growing by 1 unit, alternating up and across as n grows by 1 . So, the 1×1 square grows horizontally by 1 to become 1×2, then grows vertically by 1 to become 2×2, then grows horizontally by 1 to become 2×3, then vertically... it goes up, then across, then up, then across.

By the way, the number of solutions for even n's ($1 \times 2,2 \times 3,3 \times 4,4 \times 5,5 \times 6$, etc.) are called rectangular, oblong, or pronic numbers. I have no idea why there are three different names.

The visual pattern made really want to know what function would produce this series of numbers. I also wondered if the series $1,2,4,6,9,12,16,20$ shows up other places, so I searched the Online Encyclopedia of Integer Sequences ${ }^{1}$ (http://oeis.org/) for the sequence. It turns out that this series is called the quarter-squares and they have a rich history going back to the Babylonians and have been used recently in computer programming because of a cool property they have.

They are called quarter-squares because to produce them you square an integer then divide it by 4. If there is a non-integer part, throw it away. Here's a table showing how the series is calculated:

n	square it	divide by 4	throw away decimal part (if any)
1	1	.25	0
2	4	1	1
3	9	2.25	2
4	16	4	4
5	25	6.25	6
6	36	9	9
7	49	12.25	12
8	84	16	16
9	100	10	20
10	n^{2}	$\frac{n^{2}}{4}$	10
n			floor $\left(\frac{n^{2}}{4}\right)$

I'm not going to try to explain it, but I also found out the quarter-squares have been used to simplify multiplication before modern computers.

Thank you, Ramon! What a great exploration.

[^0]
[^0]: ${ }^{1}$ If you haven't been to OEIS before, check it out. You might look up triangular numbers, pronic numbers, etc.

