Further Insight into the Mondrian Art Problem

Hannes Bassen
18069 Rostock, Germany - hannesbassen@yahoo.de
(Dated: 29.11.2016)

In this work a computational method is presented, which allows to obtain the least possible defect in
the Mondrian Art Problem. The found solutions are also optimal regarding the least used rectangles.
We show optimal solutions up to a grid size of n = 32.

I. INTRODUCTION

Mondrian Art refers to the Dutch painter Piet Mondrian,
who is known for the common use of rectangular shapes
in his works. A deduced math problem, the Mondrian
Art Problem, is introduced in [3] and is shortly presented
here.

The situation is the following: We consider an equally
spaced two-dimensional grid of size! n x n. The whole
area of the square has to be filled with non-overlapping
non-congruent rectangles with integer dimension, the
trivial case of one square filling the entire area is not
allowed. Each filling of the square can be rated by the
difference between the area of the largest and the small-
est rectangle, which is denoted as defect d of the solution.
The problem is to find the solution of grid size n with the
smallest possible defect.

(a) (b)

Fig. 1: Exemplary solutions for the grid size n = 7. The
defect of solution (a) is d = 25, for (b) itisd =T7.

Examples for solutions of the Mondrian Art problem are
shown in fig. 1 for the grid size n = 7: The solution in
fig. la consists of four rectangles with sizes 6 x5, 4 x 2,
3x2 and 5x1. Obviously the defect of this solution is
6 x5 — 5x1 = 25, which is far from being optimal. An
easier and better solution is shown in fig. 1b consisting
of the rectangles 7x4 and 7x3, which defect is therefore
d=T.

As a consequence the solution in fig. 1b can be general-
ized to squares with odd grid size n = 2m + 1. Partition-
ing the square into the two rectangles n x (m + 1) and

1 Only square grids of different sizes are considered, therefore the
grid size is simplified to n as of now.

n X m leads to the least defect being d < n. However
since squares with even size n = 2m cannot be parti-
tioned the same way, we divide them into n x (m — 1)
and n x (m+ 1) instead and receive the estimate d < 2n.
As will be shown below there is still room for improve-
ment. In the next section a computational method is
presented, which allows to obtain optimal solutions for
moderate grid sizes.

II. THE ALGORITHM

A naive ansatz, one could come up with to find the op-
timal solution for a given grid size, is to fill the square
with every possible rectangle at every possible position.
Due to the immense amount of combinations this is not
feasible. Often rectangles would not fit in the remain-
ing free space either due to their area being too large or
simply by being blocked by other rectangles. In order to
face this issue, we present a 4-step algorithm below.

Step 1: Getting rectangles

First of all a list is created containing all non-congruential
rectangles, that fit inside the square of size n (again, the
trivial case of a n x n rectangle is not allowed). However
all rectangles with an area larger than about half of the
square area can be omitted - they would only increase the
defect to d > n. This list is then sorted in descending
order by the area of the rectangles.

Step 2: Getting recipes

Taking the list of all possible rectangles, we can generate
a second list, each entry containing a list of rectangles,
whose areas added together yield the square’s area n2.
In this work these entries are refered to as recipes. In
order to reduce the amount of memory and computing
time needed to build this list, one can limit the allowed
defect d to d_ < d < d4. In practice setting d_ to zero
and d slightly above the expected defect is sufficient. If
d4 is set too low, the found recipes might not contain a
valid solution.

Step 3: Removing impossible recipes

Now we have a fairly large list of recipes, each entry re-
stricted to the square’s area n2. But lots of the recipes
are impossible due to the fact, that their dimensions do
not add up to n, meaning that the corresponding rectan-
gles cannot fit inside the square without overlapping. By
focusing on each rectangle in each recipe and checking in
both directions, if there is a subset of the remaining rect-
angles, whose side lengths added to the width/height of
the concerned rectangle yield the grid size, the impossible
recipes can be removed from the list.

Step 4: Finding solutions

A list of recipes remains, which are restricted to both
area and length. They are to this point valid candidates
for solutions. A useful property of the list of recipes is,
that its entries are sorted in increasing order primarily by
the defect and secondarily by the number of rectangles
necessary for a solution. This is a result of the steps 1
and 2.

In order to find a solution to a recipe or to prove its
unsolvability, we need to exhaustively fill in rectangles
in the square. Let’s take a look at a situation, where a
few rectangles are already filled in. At first we list all
free concave corners and pick one. Then we try to insert
one of the remaining rectangles in any direction inside
the picked corner. As a major optimization it is not
necessary to check the other found corners. In case one of
the rectangles has no intersection with other rectangles,
we insert it and again list all free concave corners etc.
Otherwise, if no rectangle fits inside the free space in
this step, the last inserted rectangle needs to be either
turned in its corner or replaced by the next remaining
rectangle.

Once all rectangles are successfully inserted, our solution
is found, otherwise the last rectangle in the very first
corner of the square needs to be replaced, but since all
other rectangles were already checked, no solution exists.
In the worst case for k rectangles there are roughly 2¥k!
permutations, which need to be checked. However due
to the applied restrictions to the recipes the average case
is much better.

III. RESULTS

With the described computational method at hand,
we unleashed it on the grid sizes n = 3 to n = 32
and found several unknown solutions with low defects.
Keeping the design of the algorithm in mind, the
solutions are expected to be optimal with regards to the
smallest possible defect and secondarily with regards to
a composition with the fewest rectangles. All found best
solutions are shown in tab.I: As before, n is the grid
size, d the defect and k the number of rectangles used

n d| k|composition

3 2| 3(2x2 3x1 2x1

4 4] 4|3x2 4x1 2x2 2x1

5 4| 3|5x2 3x3 3x2

6 5| 5|bx2 3x3 6x1 3x2 5x1

7 5] 5|6x2 4x3 5x2 4x2 7x1

8 6| 6|7x2 6x2 4x3 bx2 8x1 4x2

9 6| 3[6x5 9x3 6x4

10 8| 6[10x2 5x4 6x3 8x2 Tx2 6x2

11 6| 8|9x2 6x3 8x2 4x4 5x3 TX2 6x2 4x3

12 7110{9%x2 6x3 8x2 4x4 5x3 Tx2 12x1 6x2 4x3 11x1
13 8| 6[8x4 10x3 6x5 9x3 13x2 8x3

14 6| 6]6x6 Tx5 11x3 8x4 10x3 6x5

15 8| 5[12x4 8x6 15x3 11x4 8x5

16 8| 8[6x6 Tx5 11x3 16x2 8x4 10x3 6x5 14x2

17 8112]14x2 Tx4 9x3 13x2 5x5 12x2 8x3 6x4 11x2

<3 10x2 5x4

18 8110|182 123 4 75 113 162 152 6x5 142 T4

19 8110|104 85 133 192 123 9xd 75 113 162 84

20 9(10(9x5 114 143 76 202 104 13x3 123 94 6x6

21 9(10]16x3 124 86 153 PG 114 143 76 85 13x3

22 9112[15x3 9x5 22x2 11x4 14x3 7x6 10x4 19x2 18x2
12x3 9x4 6x6

23 8| 7|16x5 10x8 11x7 19x4 18x4 12x6 9x8

24 9111{19x3 14x4 8x7 11x5 18x3 13x4 17x3 10x5 77
16x3 12x4

25 10[14(25x2 10x5 7X7 16x3 8x6 23x2 22x2 11x4 21x2
14x3 7x6 20x2 10x4 8x5

26 9113[19x3 14x4 8x7 11x5 18x3 26x2 13x4 17x3 10x5
TXT 24x2 16x3 12x4

271 10[16]25x2 10x5 7x7 24x2 16x3 12x4 8x6 23x2 15x3
Ix5 22x2 11x4 14x3 7x6 20x2 10x4

28 9115[19x3 28x2 14x4 87 11x5 18x3 9x6 26x2 17x3
25x2 10x5 77 24x2 16x3 12x4

29 9(11|{9x9 16x5 10x8 26x3 13x6 11x7 19x4 25x3 18x4
12x6 9x8

30| 11[{15]|11x6 16x4 8x8 21x3 9x7 30x2 20x3 15x4 12x5
10x6 19x3 28%x2 14x4 8x7 11x5

31> 11

32 1010186 129 15<7 26x4 176 254 20x5 1010 11X9
14x7

Tab. I: Number of rectangles k, defect d and
composition of the solution for grid sizes up to n = 32.

in the solution. Additionally the composition of each
solution is displayed, the visual proof to these solutions
can be found in the appendix. The found least possible
defects are always less than or equal to the results, that
were formerly knownM2IB! For n = 31 no solution with
defect d = 11 is found yet.

By way of example the lowest known defect for n = 18
was reduced from 1012 to 8 in this work, for n = 14 from
92 to 6. Although there seems to be a slight increase

dlni no
0|3 - 419
113 - 700
2| 4 - 897
3|3 - 417

Tab. IT: Ranges n; < n < ng of grid sizes for small
defects d, where no solution exists.

in the defect for larger grid sizes, no obvious pattern is
visible.

Another result, this algorithm gives by adjusting the pa-
rameters d_ and d, is that there are no solutions with
defect 0 < d < 3 in certain ranges of grid sizes, as is
shown in tab. II. Solutions for these defects (with the ex-
ception of d = 2 for n = 3) might be rare, nonexistent or
only found at larger grid sizes.

IV. CONCLUSION

In this work we presented a performant algorithm to solve
the Mondrian Art Problem, which is capable of sorting
out impossible solutions and quickly searching for a solu-
tion given a valid recipe. Now the least possible defects
are known for grid sizes less than 31 and for n = 32. Even
though a lot of time went into tweaking the algorithm, it
runs into trouble regarding computing time, if the num-
ber of rectangles in a recipe is larger than about 16 to 17.
This happens quiet frequently for larger grids beyond the
ones shown in tab.I. Nonetheless the new algorithm can
find (all) valid candidates for a solution with least possi-
ble defect, although the actual search for a solution might
not be computable at this point in time with the current
method, its implementation and the used hardware.

[1] E. Pegg Jr, Mondrian Art Problem, http://demonstrations.wolfram.com/MondrianArtProblem (visited on 25.11.2016)
[2] E. Pegg Jr, sequence A276523, in: OEIS, https://oeis.org/A276523 (visited on 25.11.2016)
[3] G. Hamilton, Mondrian Art Puzzles, http://mathpickle.com/project/mondrian-art-puzzles (visited on 25.11.2016)

APPENDIX

Below all solved squares corresponding to the solutions listed in table I are shown. Smaller integers inside the squares
denote a larger area of the rectangle and vice versa - zero denotes the biggest rectangle.

n=9 n=10

n=11 n=12

http://demonstrations.wolfram.com/MondrianArtProblem
https://oeis.org/A276523
http://mathpickle.com/project/mondrian-art-puzzles

n=13

n=16

n=18

n=19

n=20

n=21

n=24

n=25

n=26

n=27

n=28

n=29

n=32

	Further Insight into the Mondrian Art Problem
	Abstract
	Introduction
	The Algorithm
	Step 1: Getting rectangles
	Step 2: Getting recipes
	Step 3: Removing impossible recipes
	Step 4: Finding solutions

	Results
	Conclusion
	References
	Appendix

