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Computation

Whole number computation—adding, subtracting, multiplying, and dividing—has
' always been a major topic in the elementary school curriculum. And this focus is still
justifiable, even in today’s technological age. First, being able to compute is a practi-
cal skill that lets us answer questions such as how much? how many? how many times
greater! We use computation every day—when verifying that a store clerk has given
us the correct change, figuring the tip to leave in a restaurant, or determining how
much it will cost to buy the required number of party favors for a birthday celebra-
tion. Second, whole number computation is the foundation of arithmetic. It can
help students make sense of mathematical relationships and prepare them for later
work with fractions, signed numbers, and algebra. Whether computations involve
“naked” numbers or are embedded in word problems, students need to know how to
solve them. They must be able to determine when to use mental math, paper and
pencil, or the calculator. Most important, their methods must make sense, both to
themselves and to others.

1. Mathematical Properties

All of us use the commutative, associative, and distributive properties when working
with whole numbers, fractions, and decimals. Yet many teachers consider properties
to be “too mathematical for young students” and “not especially relevant to what we
teach in the elementary grades.” The opposite is closer to the truth. These proper-
ties, together with the operations of addition, subtraction, multiplication, and divi-
sion, are the foundation of arithmetic. We use mathematical properties when
performing computations and recalling basic facts. We use them to reduce the com-
plexity of equations and expressions and to perform mental calculations more easily.
Children often notice the relationships on which these properties are based (e.g., the
order of the addends does not affect the sum) and use them when computing. The
goal is for elementary students to build upon their understanding of these properties
using whole numbers, fractions, and decimals and in the middle grades to be able to
represent these properties symbolically with variables. Mathematical properties are
an avenue to higher-level thinking, because they illustrate general cases and can lead
to mathematical generalizations.
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The Commutative Property

The commutative properties of addition and multiplication state that the order of

two addends (e.g., 12 + 9 or 9 + 12) or two factors (e.g., 3 X 7 or 7 X 3) does not

affect the sum or product, respectively. The root word of commutative is commute,

which means to interchange—we can reverse the order of two addends or two factors

without changing the result. These powerful properties reduce the number of basic

facts students need to memorize: having learned that 5 + 6 = 11 or 3 X 4 = 12, they
. also know that 6 + 5 =11and 4 X 3 = 12.

But not all students recognize on their own that the order of the addends or fac-
tors doesn't matter in terms of the sum or product. One reason is that when they first
learn basic addition or multiplication, they focus on the operation and on obtaining
an answer that ideally makes sense. They don't reflect on the outcome of the opera-
tion in relation to the order of the numbers. Often teachers decide to introduce the
idea of the commutative property after students have become familiar with either ad-
dition or multiplication. They might help students discover that when adding 3 + 9
in their head, for example, it is easier to start with the 9 and count on three numbers
(10, 11, 12) than to start with the 3 and count on nine numbers. However, this still
doesn’t necessarily mean students will generalize that the order of the addends doesn’t
matter. Teachers can then present a number of examples of the commutative prop-
erty of addition (6 + 8 = 14 and 8 + 6 = 14,23 + 57 = 80 and 57 + 23 = 80, etc.),
ask students to identify any patterns in the number pairs and make a generalization
about the pattern, and then ask them to investigate whether their generalization
holds true for other numbers.

The commutative property of multiplication can be especially confusing to stu-
dents. In an addition operation, the addends represent subgroups comprising the
same things: if 2 + 3 is expressed as 3 + 2, only the order of the subgroups changes.
In the grouping interpretation of multiplication, 3 X 4 and 4 X 3 represent differ-
ent groupings—three groups of four versus four groups of three—and do not look
the same.

OO +000

commutative property
of addition

OO0 +00

IEENE
DI

commutative property
of multiplication
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| Students need to model many multiplication equations in order to see that the
| products are identical. A rectangular array (consisting of rows and columns) often
helps students make sense of multiplication’s commutative property, because the di-
mensions of an array can be depicted in different orders (5 by 8 and 8 by 5, for exam-
ple) but each arrangement consists of the same number of squares. Rotating an array
bearing row and column labels also provides a strong visual image of commutativity.
The commutative property of multiplication can also be confusing since switch-
‘ ing the factors switches the relationships in some word problems. Sometimes the
switched relationships are similar and still make sense; other times they change the
problem completely. For example, running 3 miles at 10 minutes a mile is quite dif-
ferent from running 10 miles at 3 minutes per mile, even though total running time
in each case is 30 minutes. The first rate is within normal ranges, but someone run-
ning 10 miles in 30 minutes would be making history! Instruction therefore also
needs to focus on how the relationships in multiplication problems change when the
numbers are switched even though the products are still equal.

Activity

A £ How Does Order Affect Differences?

I Objective: learn how order affects differences and identify and explain the
resulting patterns.

Pick a simple subtraction equation such as 6 — 2 = 4. Now reverse the two num-

‘ bers and perform the new subtraction, 2 — 6 = ~4. Pick another equation and
reverse the numbers. Do this a number of times. Examine the pairs of differences
(e.g., 4 and ~4). What patterns do you see in the differences? Why does this
pattern occur?

Things to Think About

Students are told often that the order of the numbers doesn’t matter in addition
but does in subtraction. While it is true that most of the time order does matter
in subtraction, there is an exception. When both numbers are identical, order
doesn’'t matter (20 — 20 = 20 — 20).

Even though subtraction is not commutative, there are interesting relation-
ships in the differences of numbers when their order is reversed for subtraction.
When the two numbers are not the same (e.g., 2 and 6), the pair of differences
are opposites: one difference is a positive number (e.g., 4) and the other is its
negative mirror image (e.g., ~4). This can be represented formally as:a — b = ¢
and b —a = cifa # b # 0. This pattern holds for fractions, decimals, and inte-
gers, as shown in the examples below:

3-2=3 1.4-12=0.2 7-(a=mn
2_5--3 12 - 1.4=-0.2 4 —-7=-11

Did you notice that the pairs of differences sum to zero (e.g., ¥4 + ~4 = 0)?

The number 0 is the identity element for addition. You can add O to any other

number and the sum will be the original number. Why does this pattern of oppo-

sites occur when we change the order of the numbers in a subtraction problem?

' The difference between two numbers can be represented on a number line as an
interval—the distance between two points. Since a distance is something we can

measure, the interval is either a positive value or zero. Thus the distance between
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2 and 6 is 4. But we can also think of this interval in terms of a direction
(see Chapter 1, page 22). If we start at 2 and move to the right toward the posi-
tive numbers, we represent this action as adding a positive 4 and we land at 6.
However, if we start at 6 and move to the left toward the negative numbers, this
action is represented as adding a negative 4.

I T S R S R R N N T T T T T Y S Y N R N S S P
T T T T T T 1 T T T T T T T T T T T T T 1
9876574737271 01 2345467 8910111213141516

Interestingly, once we include negative numbers in the set of numbers with
which we are working (for example, the real number set), the operation of sub-
traction is technically unnecessary. Instead of subtracting, we can obtain the
same answer by adding the opposite of the subtrahend (the number we are tak-
ing away). One reason we refer to relationships as “additive” instead of “additive
and subtractive” is because in the set of real numbers, by using opposites, it is
possible to rewrite all subtraction expressions and equations as equivalent addi-
tion expressions and equations. For example, we can solve 10 — 4 by adding the
opposite of 4, or ~4 (10 + ~4) and we can solve 10 — (—2) by adding the oppo-
site of "2, or 2 (10 + 2). Examine the steps below that show why these pairs of
expressions (10 — 4 and 10 + ~4; and 10 — -2 and 10 + 2) are equivalent.

10— 4 10— 72

10+ (C4+4) -4 10+ (2+72)~"2 AddO

10+ ~4 + (4 — 4) 10+ 2 + (72 — ~2) Associative property
10+ -4+0 10+2+0 Add O

10 + 4 10 + 2

Students whose instruction has focused on examining differences on number
lines or hundred charts sometimes use this understanding of differences in their
mental calculations. For example, one technique for computing 34 — 19 involves
thinking of both numbers in terms of tens and ones (30 + 4 and 10 + 9). The
numbers in each place are subtracted separately without regrouping (30 — 10
and 4 — 9), with the ones place resuiting in a negative value. The tens and ones
values are then combined—20 + (—5)—for an answer of 15.

34 Think: 30 — 10 = 20

19 4-9=-5
20
+ {—5)
15 20 + (—5) =20 - 5 =15

Young students’ explanations rarely acknowledge that they are using negative
numbers, but they often comment that 4 — 9 is “5 below zero” or they might
mention that they are “5 in the hole” or “owe 5.” They may either subtract the 5
from the 20 or add 5 to 20. Teachers are encouraged to revisit these ideas
with older students as a way of expanding their understanding of properties and
operations. A
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Activity
A O 4 How Does Order Affect Quotients?
2 Objective: explore patterns in the quotient when the dividend and divisor are
reserved.

Pick a simple division equation such as 10 + 2 = 5, The number 10 is the divi-
dend, 2 is the divisor, and 5 is the quotient, or answer. Next reverse the dividend
and the divisor and perform the new division, 2 + 10 = % Pick another equation

1’ and reverse the dividend and divisor. Do this a number of times. Examine the
pairs of quotients (e.g., 5 and %). What patterns do you see in the different quo-
tients? Do these patterns hold for all types of numbers?

Things to Think About

Division is also not commutative, but did you notice that when you reverse the
order of the dividend and the divisor, the resulting quotients are reciprocals? Rec-
iprocals are pairs of numbers that when multiplied together, give a product of 1.
For example, 5 and £ are reciprocals, since 5 X 1 = 1. The number 1 is called the
identity element for multiplication—when you multiply by 1, the value of the ex-
pression stays the same. This same pattern holds true for fractions and
integers—in fact, for all real numbers. Here are a few examples:

T+1=2 “18+6="3
iv3=3  e=(1g=7
2x3=1 BX (=1

What happens when the dividend and the divisor are the same number? In this
case, for example, 6 + 6, the quotient is 1. Reverse the 6s and the quotient stays
the same—it’s 1 in both instances. Likewise, 1 X 1 = 1, so 1 is its own reciprocal.

What happens when at least one of the numbers is 0? Consider the situation in
which the dividend is O and the divisor is 4 (0 + 4 = [J). If we think of the opera-
tion of division as repeated subtraction, we can ask ourselves, “How many
groups of four can | subtract from zero?” The answer of 0 makes sense. Using a
missing-factor interpretation of division, find the factor that when multiplied by
4 equals O (4 X [] = 0). Again, the answer, 0, makes sense. To generalize, if the
dividend is O and the divisor is another number (0 + a when a # 0), then the
quotient is 0. Now reverse the dividend and divisor: 4 + 0 = . How many times
can you subtract a group of O from 4? Once, twice, an infinite number of times?
There isn’t a unique answer that makes sense using this interpretation of division.
Let’s try the missing-factor interpretation: 0 X [J = 4. There is no solution,
because 0 X 0 = 0 and O times any other number also equals 0.

For O + 0, you can subtract O from O any number of times and still get 0, so
again there isn’t a unique answer that makes sense using a repeated subtraction
interpretation of division. Using the missing-factor interpretation ask, O times
what number equals 0? Any number works. Therefore, for 0 + 0, there is also no
unique answer. Because there isn’t an answer to expressions that are divided by 0
(a + 0), mathematicians have agreed that division by 0 is “undefined.” When you
try to divide by 0 on a calculator, the readout displays ERROR or E—the opera-
tion is undefined and thus has no solution.

The patterns in this activity are related to the fact that multiplication and divi-
sion are inverse operations—to undo multiplication we divide and to undo division
we multiply. In fact, if we multiply the dividend (the 6 in 6 + 2) by the reciprocal
of the divisor {the divisor is 2, the reciprocal of 2 is %), we have an equivalent op-
eration (6 + 2 =3,6 X % = 3). The relationship between reciprocals and undoing
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multiplication and division is very powerful and is L(sted in Iat!gﬁtzget]ior?gidn;?vﬁ
oint: the reason we refer to operations that are based on mu tip d d

gion (;nly as multiplicative is because all divisions can be rewritten as multiplica-

tions times the reciprocal of the divisors. A

The Associative Property

The associative properties of addition and multiplication relate to how we group
numbers in order to find sums and products. These properties are often used in con-
junction with the commutative properties for these operations because we regularly
change the order of addends or factors prior to regrouping. Addition and multiplica-
tion are often referred to as binary operations: we can operate on only two numbers
at a time (e.g., 3 + 4,7 X 8). If a computation involves three addends, we first
add two of the numbers and then add the third to the previous sum—for example,
(3+4) +5=7+45=12. The associative properties of addition and multiplica-
tion state that the way in which three or more addends or factors are grouped before
being added or multiplied does not affect the sum or product.

The associative and commutative properties are used to compute mentally.
For example, when adding a list of single-digit numbers, many people group digits
together that sum to 10—given, for example, 3 + 6 + 7 + 2 + 4, they might think
B+ +4+6)+2,0r10+10+2 =22, They use the commutative property
of addition to switch the order of some addends and then use the associative prop-
erty of addition to regroup the numbers to simplify the calculations by forming com-
patible numbers. Compatible numbers, often referred to as “friendly” numbers, are
numbers whose sums and products are easy to calculate mentally. For example, 25
and 4 are compatible because 25 X 4 = 100, and 35 and 65 are compatible because
35 + 65 = 100. In general, numbers that can be combined to form multiples of 10
(e.g., 10, 50, 100, 200, 1,000) are compatible.

Too often, students operate on numbers strictly in the order in which they are
encountered. Teachers can help students make sense of the associative properties of
addition and multiplication by specifically focusing on grouping—asking them to ex-
periment with adding or multiplying numbers in different orders and reflecting on the
results and the relative ease or difficulty of the calculations. For example, students
might be asked to rewrite expressions like the ones below to show different groupings
of the same numbers and to decide which grouping produces the easiest calculation.
Notice that the last expression in each list groups compatible numbers—(24 + 36)
and (4 X 5)—and can be computed quickly without paper and pencil.

Using 17, 24, and 36, form Using4, 5 and 17, form three
three addition expressions multiplication expressions

(24 + 17) + 36 (4X17) x5

24 + (17 + 36) 4 X (17 X 5)

(24 +36) + 17 (4 x5)x17

Through experimentation with specific cases, students will realize that the sums
and products are the same regardless of which two numbers are operated on first.
They may also observe that some calculations (e.g., addends that sum to 10 or its
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nore

multiples, multiplication involving a factor that has a zero in the ones place) are eas-
qui‘ ier than others. Once students have started to notice patterns and shortcuts, conduct
lica- whole-class discussions about what they observe about the mathematical relation-
ships as a way to help all students understand how they can use these properties
when computing.
Many procedures students invent when learning to add and subtract make use of
both the commutative and associative properties in conjunction with knowledge
oup 3 of place value. For example, how do you mentally compute 76 + 897 One way is to
on- break the numbers down into tens and ones—70 + 6 + 80 + 9—and then add the
farly tens and the ones separately:
ica-
sers 76
1rst + 89
Jle, 150 (70 + 80)
ca- + 15 (6 +9)
ore 165
Il When computing mentally we often work left to right rather than right ro left—first
fits adding the tens ( 150), then the ones (15), and then performing a final calculation to
,nk get 165. The order in which we add (i.e., ones then tens or tens then ones) does not
ty matter in terms of the final sum Many adults learned the rule that with all computa-
ip- tions except division you start on the right and are not aware that there are many ef-
. ficient methods for computing that don’t follow this rule.
e A mental math technique called compensation involves reformulating a sum, prod-
25 uct, difference, or quotient so that it is easier to work with. For example, rewriting
se addition computations to form compatible numbers doesn’t change the value of the
0 expression. Addends can be decomposed and then recomposed using the commuta-
tive and/or associative property to create easier computations. The addition 9 + 5
e can be changed to an equivalent addition, 10 + 4, by decomposing 5 into 1 + 4
o and adding the 1 and 9. In the computation 76 + 89, the 76 can be decomposed into
. 75 + 1; using the associative property, the 1 can then be recomposed with the 89
. (1 + 89 = 90) to form the equivalent expression of 75 + 90,
s For Think How it works
g 945 10 + 4 O+ (1+4)=(9+1) +4
)' 76 + 89 75 4+ 90 (75+1)+89=75+(1+89)

Subtraction expressions can also be adjusted without changing the final value

(difference). But in the case of subtraction, a quantity is added to (or subtracted
from) both numbers in the expression.

For Think How it works

13-9 14 -10 (13+1)—(9+1):(13—9)+(1—1)
62-28 64-30 (62+2)=(28+2)=(62—28)+(2—2)

In the examples above, either 1 or 2 is added to both n
affect the difference) so that the nu

The numbers added (in these case

umbers (which does not
mber subtracted is a friendly, compatible number.

s, 1 and 2) are not arbitrary—they were chosen
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so that both of the subtrahends (9 and 28) would be multiples of 10 (9 + 1 = 10
and 28 + 2 = 30). The reason we can either add or subtract a set quantity to both
numbers in a subtraction problem can be illustrated using the concept of the differ-
ence as an interval on the number line. We know that 10 — 6 = 4, because the
interval between 10 and 6 is 4. If we move the interval along the number line, say
to 7 and 3 by subtracting 3 from both 10 and 6, the interval or difference hasn'’t
changed. Many subtraction problems have a difference of 4 and we can create these
problems by moving the interval along the number line, adding or subtracting the
same amount each time.

1 |
-1 01234567 89101112
(7-3=4)

(10-6 = 4)

Multiplication and division expressions can also be adjusted using the commuta-
tive and associative properties of multiplication as well as the fact that a number can
be expressed as a product of its factors. The computation 306 X 5, for example, can
be rewritten as 153 X 10. Because 306 has 153 and 2 as factors, the expression can be
restated as 153 X 2 X 5. Using the associative property of multiplication, the multi-
plication 2 X 5 is calculated first, followed by 153 X 10.

For Think How it works
306 X 5 153 X 10 (153 X 2) X 5=153 X (2 X 5)

Even though how we group addends or factors does not change the final sums or
products, these properties cannot be generalized to number sentences that involve
more than one operation. So what happens when we have number sentences with
more then one operation? Is grouping important? For example, what is the answer to
2 + 6 X 37 Did you get 24 or 20? When there is more than one operation in a com-
putation, how we group the numbers makes a difference in terms of the answer!

Remember that the operations of addition, subtraction, multiplication, and divi-
sion are binary operations. Namely, we perform these operations on two numbers at a
time. So when we consider the order in which to perform computations, we are
always working with two numbers and one operation at a time. Rules for the order of
operations developed gradually over hundreds of years. Some of the rules evolved
naturally, such as the use of parentheses to clarify the intent of the writer of a number
sentence, but other rules are somewhat arbitrary and were agreed on by mathemati-
cians as the need for consistency became greater. In particular, with more and more
computations being performed by calculators and computers, it became important
that everyone agree on a specific order in situations that might be interpreted in
many ways. Looking back at 2 + 6 X 3, the order of operations indicates that we first
multiply 6 times 3 and then add 2 for an answer of 20!
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Activity | i
A A 4 How Do Grouping and Order Affect Answers?
3 Objective: explore how the order of operations affects answers.
When does it matter which operation is performed first in a problem? Pick two
operations to investigate—say addition of 5 and division by 2. Choose four num-
bers to perform the operations upon (1, 9, 12, and 20) and then switch the op-
erations and record the results in a table. Compare the results. What patterns do
’ you notice?

Starting Number Add 5, Divide by 2 Divide by 2, Add 5

1

9

12

20

Try this with the following operations:
A Addition and subtraction.

A Multiplication and division.

A Multiplication and subtraction.

Things to Think About

Examining the two columns that have + 5 followed by + 2 and + 2 followed by
+ 5, we see that the order of these two operations does matter.

Starting Number

Add 5, Divide by 2

Divide by 2, Add 5

1 3 5.5
9 7 9.5
12 8.5 11
20 12.5 15

The answer is always greater when you divide first and then add. In fact, the
difference is exactly 2.5. Why? Let’s use x to stand for any number. We can rep-
resent “add 5, divide by 2” as *%2 and “divide by 2, add 5" as X + 5. Before pro-
ceeding, take a minute and decide why the symbolic representations of these
two expressions are different. It may help to be explicit about the actions: “add 5
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to a number and divide the new sum by 2” compared with “take a number and
divide it by 2 and then add 5 to the result.” Next represent each expression as
the sum of two fractions: 52 =% + 3and ¥ + 5 =% + 3.

Notice that we divide the number, x, by 2 in both expressions (3), but when we
add 5 first, that 5 also gets divided by 2, which gives us 2.5. When we add the 5
after the division, that 5 is unaffected by the division. The difference between
5and 2.5is 2.5.

When a computation only has the operations of addition and subtraction, the
computations need to be performed in the order that they occur in the expres-
sion. Otherwise, we will not consistently get the same answer. For example, in
9 — 3 + 2, we first subtract 3 from 9 and then add 2 for an answer of 8. If we
first added 3 + 2 before subtracting, a different answer of 4 is calculated.

(9 - 3)+2 9 - (3+2)
6+ 2 9-5
8 4

When we have both the operations of multiplication and division or the opera-
tions of multiplication and subtraction, it does matter which operation we per-

form first.
30 + (2 X 5) (30 + 2) x5
30 + 10 15 X5
3 75
(25 — 12) x 2 25 - (12 X 2)
13 %2 25 - 24
26 1

The answers are quite different, depending on which operation is performed
first. Explore the relationships between the answers based on which operation is
performed first using algebra. Let x represent the starting value. Explain why the
answer to (x — 12) X 2 is different from the answer to x — (12 X 2).

In order to avoid errors, when there are more than two operations in a number
sentence, we use the Order of Operations: first do any calculations that are
grouped together (often shown with parentheses or the fraction bar), then calcu-
late exponents, then multiply and divide from left to right, and finally add and
subtract in order from left to right. Teachers sometimes provide students with the
mnemonic PEMDAS (parentheses, exponents, multiplication, division, addition,
subtraction) as a way to remember the order of operations. However, many edu-
cators believe this mnemonic causes more harm than good. If students have not
had opportunities to explore what happens when the order of operations is
reversed, they may apply the rules blindly or misinterpret what the letters in PEM-
DAS represent. For example, instead of performing the operations of multiplica-
tion and division in the order they occur from left to right, students sometimes
first do all the multiplications followed by all divisions, regardless of order. A

The Distributive Property

The distributive property of multiplication over addition allows us to “distribute” a
factor, a, to two different addends (or in more math terms, “over” two different
addends), b and ¢: a(b + ¢) = ab + ac. It is used extensively when computing
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mentally. For example, how would you mentally multiply 3 times 587 One approach
is to think of the 58 as 50 + 8 and use the distributive property of multiplication
over addition:

IXS58=23XB0+8)=3X50)+3%X8)=150+24=174

The distributive property is often used in connection with compensation; that

is, to calculate 3 X 58, we adjust it to make an easier calculation. In the example
1 above, we can round 58 to 60 and then subtract 2. This quantity is then multiplied
by 3 (3 X (60 — 2)).

But can the distributive property of multiplication be applied to subtraction? Yes,
since we can decompose a number into the sum of two addends and the addends can
be negative or positive. For example, think of the subtraction 60 — 2 as equivalent to
60 + -2, since adding -2 is equivalent to subtracting 2. Thus, we can distribute mul-
tiplication over the (60 — 2), which is equivalent to distributing multiplication over

(60 + -2):

IX58=23X(60-2)=(3X60)-(3X2)=180—-6=174
IX58=3X(60+-2)=(3X60)+(3X-2)=180+-6=174

The distributive property may also be applied to division expressions. Consider
the expression 132 + 12. An equivalent expression using multiplication is 132 X 4.
If we rewrite 132 as (120 + 12), we can distribute the multiplication by % over both
addends.

132X 5= (120+ 12) X 5= (120 X ) + (12 X 4) = 10 + 1 = 11

Because we can rewrite all division {except by 0) as multiplication, we can also apply
the distributive property of multiplication over addition to the problem:

132+12=(120+12) + 12=(120+12) + (12 + 12) > 10+ 1= 11

Not only is the distributive property useful when computing mentally, but it also
is applied in our standard multiplication and division algorithms. When students
study algebra, they learn how to apply the distributive property when multiplying
polynomials.

Properties of whole numbers are used extensively when computing. The particu-
lar numbers involved in a calculation determine when it makes sense to use the
commutative, associative, or distributive property or some combination of them. Al-
though it’s not important for young students to be able to identify these properties by
name, it is extremely important that teachers understand how these properties en-
able students to compute accurately. Thus, teachers can highlight the essential com-
ponents of students’ solution methods (e.g., multiplying by one, changing the order,
grouping different numbers together, undoing an operation, or decomposing and re-
composing) in order to help students analyze why procedures work to produce cor-
rect answers. In middle school, students revisit these properties in preparation for
algebra. If they have a solid grasp of when and how these properties are used in arith-
metic, they will be better able to generalize the relationships and represent them
with variables.
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2. Basic Facts

The basic facts in addition and multiplication are all possible sums and products
of the digits 0 through 9. Although technically there are 100 addition facts and
100 multiplication facts, because of the commutative property there are actually only

55 unique basic facts for cach operation:
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addition basic facts multiplication basic facts

Furthermore, adding 0 or multiplying by 1 poses no problems for memorization
because of the identity properties of addition and multiplication (@ + 0 = a and
a X | = a). Thus, there are even fewer than 55 tacts to learn.

Since knowledge of the addition facts can be applied to subtraction and knowl-
edge of multiplication facts can he applied to division, there is no need to learn sub-
traction and division facts as isolated procedures. However, this assumes that the
relationships between inverse operations (operations that “undo” each other—
addition and subtraction, and multiplication and division) have been thoroughly
explored, discussed, and internalized. When students understand the inverse rela-
tionship between operations, you can encourage them to use what they know about
multiplication, for example, to learn about division. If they need ro solve 36 + 9,
suggest that they think, 9 times what number is equal to 367 After generating equa-
tions that use the numbers 36, 9, and 4, they can then discuss how and why these
multiplication and division equations are related. You might also ask them to write
rwo stories (one multiplication, one division) that use the numbers 36, 9, and 4 and
then ro reflect on how the stories are similar and different. You can also introduce
activities that feature division “near facts.” For example, if we convert 50 + 8 to a
multiplication problem, 8 > 7 1s too large, = 5 15 too small, and 8 X 6 is still too
small but closer. Using this information, students can then determine that 50 + 8 =6
with a remainder of 2.

Students need to know the basic facts in order to be hoth efficient and accurate,
whether their calculations are pertormed mentally or by applying paper-and-pencil
algorithms. Instruction involving basic facts should focus on making sense, highlight
strategies for remembering facts, and he connected to all other work with number.
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This instruction might include activities that ask students to explore relationships
between operations (e.g., addition and subtraction) or to explore properties and then
apply the properties to learning other facts. For example, students might determine
8 X 7 by decomposing 7 into 3 + 4 and using their knowledge of 8 X 3 and 8 X 4
(24 + 32 = 56). This strategy works because of the distributive property (8 X (3 + 4)).
Likewise, students can further their knowledge by writing word problems that use the
facts in a meaningful context, using concrete objects to connect these situations
with symbols, and discussing relationships within fact families.

Learning facts is a gradual process that for most students takes a number of years.
(See Chapter 3 for specifics on how skills develop in addition and subtraction.) Even-
tually, however, students need to commit the basic facts to memory. Naturally, the
exact age when a particular student masters these facts varies. In general, however,
most students have mastered addition/subtraction facts by the end of third grade and
multiplication/division facts by the end of fifth grade. “Mastery” does not imply that
students are human calculators able to perform at lightning speed. It means that they
know the facts well enough to be efficient and accurate in other calculations.

3. Algorithms

Algorithms, as the term is applied to the arithmetic procedures students traditionally
have learned in school, are systematic, step-by-step procedures used to find the solu-
tion to a computation accurately, reliably, and quickly. Algorithms, whether per-
formed mentally or with paper and pencil, a calculator, or a computer, are used when
an exact answer is required, when an estimate won't suffice. Because they are general-
izations that enable us to solve classes of problems, they are very powerful: we can
solve many similar tasks (1,345,678 — 987,654 and 134 — 98, for example) using one
process. In the best of circumstances, algorithms free up some of our mental capacity
so that we can focus on interpreting and understanding a solution in the context of a
problem. In the worst of circumstances, algorithms are used when a task could be
done mentally or are applied by rote with little understanding of the bigger mathe-
matical picture—why the calculation is important and how the answer will be used.

There are many different algorithms for performing operations with numbers.
Some of these algorithms are now referred to as standard or conventional simply be-
cause they have been taught in the majority of U.S. classrooms over the past fifty
years. For example, you may have learned (or taught) the standard addition algo-
rithm shown below, in which you “carry” from the ones column to the tens column
to the hundreds column:

1

456
+899
1355

Interestingly, some of the conventional algorithms in the United States are not the
standard algorithms in Europe or South America. Children around the world learn
different computational procedures in school.

Other algorithms are known as alternative algorithms—they differ from the standard
algorithms for adding, subtracting, multiplying, and dividing. Alternative algorithms
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also are accurate, reliable, and fast. Alternative algorithms such as the lattice method
for multiplication have sometimes been used in schools as enrichment activities.
Today many alternative algorithms are part of the elementary mathematics curricu-
lum. Making sense of algorithms can be instructive; students figure out why certain
procedures work, which leads them to insights into important ideas such as place value
and the distributive property of multiplication over addition.

In the 1990s many researchers and mathematics educators began to question the
wisdom of the rote teaching of conventional algorithms to students in the elemen-
tary grades. Research has shown that when children simply memorize the steps to
complete the standard addition and subtraction algorithms, they lose conceptual un-
derstanding of place value. In contrast, students who invent their own procedures or
algorithms for solving addition and subtraction problems have a much better under-
standing of place value and produce more accurate solutions (Kamii 1994; Kamii and
Dominick 1998; Narode, Board, and Davenport 1993). Many mathematics educators
now suggest that instead of teaching students standard algorithms as the only or best
ways to compute with paper and pencil, we provide many opportunities for students
to develop, use, and discuss a variety of methods. Having students invent algorithms
leads to enhanced number and operation sense as well as flexible thinking (Burns
1994b; Carroll and Porter 1997, 1998).

Many elementary curriculums are designed so that children initially use logical
reasoning and their understanding of number (e.g., that 36 can be decomposed into
30 + 6), place value, and mathematical properties to invent their own algorithms
and procedures to solve addition and subtraction problems. The purpose of this type
of instruction is to extend and expand students’ understanding of number, place
value, decomposition, and recomposition (see Chapter 1 for elaboration) as they
learn to compute. Student-invented or student-generated procedures sometimes are
algorithms; that is, they can be generalized to classes of problems and they enable the
student to produce accurate answers. (They many not be efficient or easy to use,
however.) Other procedures are not algorithms; they may enable a child to calculate
a correct answer, but they cannot be generalized to other problems.

However, as students progress through the grades, they need to acquire efficient
ways to compute, and student-generated methods may not suffice. Thus, after stu-
dents have experimented with developing their own methods, teachers often intro-
duce standard and alternative algorithms as a focus of study. When these algorithms
are examined and analyzed, not taught in a rote way, students have the opportunity
to build on their already established understanding of number and place value to
expand their repertoire of efficient, reliable, and generalizable methods.

In schools we often associate the study of algorithms with paper-and-pencil proce-
dures. One useful by-product of paper-and-pencil algorithms is that they provide a
written record of the processes used to solve a problem. Students can use this record to
refine procedures, share what has been accomplished, and reflect on solutions. Keep-
ing a record of the steps in an algorithm is especially important when students are try-
ing to make sense of the reasoning involved in the computation. The activities in this
section examine a variety of algorithms and student-invented procedures for whole
number computations. The goal is for you to understand why these methods work and
to consider the mathematics that students have made sense of in order to use them.
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Activity
A A 4 Analyzing Students’ Thinking, Addition

/

Objective: learn some common addition strategies.

Examine the following examples of students’ procedures for solving addition
problems. First, explain what the student did to obtain a correct answer. Then
use the student’s algorithm to solve the problem 1367 + 498.

Kelly Rudy Andy
! 567 567 567 = 600
+ 259 + 259 + 259 + 226
700 826
110 200 — 567, 667, 767
16 50 — 777, 787, 797, 807, 817 259
826 9 — 818, 819, 820, 821, 822 -33

823, 824, 825,[826] 226

Things to Think About

Kelly’s algorithm is sometimes called the partial sums method. She added the
digits in the problem by place value, starting with the largest place value
{hundreds)—500 + 200 = 700, 60 + 50 = 110, 7 + 9 = 16. After calculating
the partial sums, Kelly added them (700 + 110 + 16 = 826). Kelly is able to de-
compose numbers into hundreds, tens, and ones, add like units, and then recom-
pose the three subtotals to produce the final sum. Since her use of this algorithm
implies that she understands place value through hundreds, she would probably
be able to generalize this approach to four-digit and larger sums. To solve 1367 +
498 using Kelly's method you would figure this way:

1367
+ 498
1000
700
150
15
1865

How did Rudy solve 567 + 2597 It appears that he started with 567 and ei-
ther counted on or added on, first by hundreds, then by tens, finally by ones. He
started with the hundreds, writing 567, 667, 767. Then he continued with five
tens: 777, 787, 797, 807, 817. Finally he finished with the ones: 818, 819, 820,
821, 822, 823, 824, 825, 826. While this procedure works, it is prone to error,
especially when an increase in one grouping necessitates an increase in the next
one up (797 to 807, for example). To solve 1367 + 498 using Rudy’s method,
round 498 up to 500, count on by hundreds (1467, 1567, 1667, 1767, 1867),
and then count backward by ones (1866, 1865). Sometimes students use an in-
vented procedure for a short period of time and then move on to another, more
efficient procedure or algorithm. The importance of classroom discussion about
solution procedures cannot be overemphasized—students often learn about
other approaches when their classmates describe their method.

Andy used an approach different from the other two students in that he did
not decompose the numbers based on hundreds, tens, and ones. Instead, he
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changed both numbers to other numbers that he thought would be easier to use.
He started by adding 33 to 567 to get 600. He then subtracted the 33 from 259
to get 226. Finally, he added his two adjusted numbers: 600 + 226 = 826.
Andy’s method works because of the associative and commutative properties. The
identity property of addition also comes into play: adding zero—33 + (—33) = 0—
doesn’t change the sum:

567 + 259 = (567 + 259) + (33 + -33)
(567 + 33) + (259 + ~33)
(567 + 33) + (259 — 33)
= 600 + 226

= 826

Andy’s procedure is very efficient with an addition such as 1367 + 498, because
it's easy to “see” how to change 498 to 500 and compensate by subtracting two
from 1367. However, this approach may not be all that ideal with problems such
as 2418 + 1725 (though it will work}, since the additions and subtractions lead-
ing to the adjusted numbers may require a lot of mental energy. A

Activity
A O 4 Analyzing Students’ Thinking, Subtraction

Objective: learn some common subtraction strategies.

Examine the following examples of students’ procedures for solving the same
subtraction problem. What did each student do to obtain a correct answer? Why
does the student’s algorithm work?

Caitlin Louis Kenley
13
63 63 63
-18 10+8 -218 -18
63 — 10 =53 28 10
52, 51, 50, 49, 38 10
48, 47, 46, 45 48 10
58 10) or 40

+5 5

Things to Think About

Caitlin solved this computation by inventing a procedure based on her under-
standing of place value and counting back. First she decomposed 18 into 10 + 8,
then she removed the 10 from 63 (63 — 10 = 53), and finally she counted back 8
from 53 to 45. This procedure is commonly seen in second-grade classrooms in
which children have been encouraged to invent their own procedures that make
sense to them. Let’s try Caitlin's procedure with 152 — 39,

152
-39 30+9
100

52 — 30 = 22
122

122,121,120, 119, 118, 117, 116, 115, 114, [ 13]
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While it is unlikely that you would use this procedure for larger multidigit sub-
traction problems, adults do use a combination of methods including counting
back with simple calculations such as determining elapsed time (e.g., for how
many hours do I pay the baby-sitter if it is now 12:45 a.m. and I left at 4:30 pm. ?).
Depending on the context and the numbers in a problem, simple counting proce-
dures can be quick and efficient.
Louis moved to the United States when he was eleven and learned this algo-
rithm in school in Italy. What are the steps in Louis’s algorithm? First, Louis no-
! ticed that there were not enough ones in the ones place (3) to subtract 8, so he
changed the 3 to a 13. Because he added 10 to the 63 (63 + 10 = 60 + 13), he
had to add 10 to the 18 (10 + 18 = 28) in order not to change the problem.
Louis recorded the 10 added to the 18 by changing the 1 in the tens place to a 2.
He then subtracted the ones (13 — 8 = 5) and the tens (6 — 2 = 4) to obtain the
answer of 45. This algorithm uses compensation (see page 37 in this chapter)—if
you add (or subtract) the same number to both the minuend and the subtrahend
in a subtraction problem, the difference is not affected.

63+10 = 73 63+ 10= 60 +13
- 18+ 10 — 28 —18+10= 20+ 8
45 45 40+ S

What is interesting about Louis’s algorithm is that the 10 is added to different
place values, which simplifies the computation. Let’s try his procedure with 81 — 58:

11

81
- 658
23

Kenley understands the inverse relationship between addition and subtraction
and used an approach sometimes referred to as “adding on” or “counting up.” It
is often used by students for subtraction word problems involving money when
making change. For example, to solve the problem, “How much change should
you receive from a $5.88 purchase if you give the clerk a $10 bill?,” you can add
on from $5.88 to $10.00 ($.12 makes $6.00 plus $4.00 makes $10.00, the
change is $4.12). The amount Kenley added on to 18 to reach 63 was her an-
swer. She counted by tens until she was close to but not above 63: 28, 38, 48,
58. She recorded that she had added four tens, or 40. When she realized that five
more ones would bring her to 63 (58 + 5 = 63), she had her final answer of 45.
Let’s use Kenley’s method to solve 81 — 58:

58 68, 78
81 =
- 58 78 79, 80, 81

I
81

The standard subtraction algorithm is the one that most adults were taught
when students. It is an efficient method that is based on decomposition and re-
grouping. Let's examine how Juan solves 152 — 39.

412

137

-39

113
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Juan's actions are based on the fact that numbers can be decomposed into hun-
dreds, tens, and ones (152 = 100 + 50 + 2) and recomposed in less efficient
groupings (152 = 100 + 40 + 12) that can be used in certain types of problems.
He notes that since there are only 2 ones in the ones place and he wants to sub-
tract 9 ones, he needs to regroup 1 ten from the tens place and combine these
10 ones with the 2 ones for a total of 12 ones. This leaves only 4 tens in the tens
place. Now he can subtract by place value (12 —9=3,40-30=10,100-0 =
100). In the most abbreviated version of this algorithm, Juan subtracts 4 — 3 and

’ 1 — 0 as if these numbers represented ones, but knows that by their place-
ment in the tens and hundreds columns, respectfully, they represent 40 — 30 and
100 — 0. As with many algorithms, this one can be applied by rote. If students
solve problems such as this one using a memorized procedure, they usually are
unable to explain their actions. For example, they can’t tell you what the 4 or the
12 above the tens and ones places represent and why those numbers are being
used. Students who are unclear on the purpose of regrouping sometimes record
answers that make no sense. Or, if students report that “this is how you do it"
when asked to explain their steps, it is a signal that they may have memorized
the procedures to execute the algorithm without understanding them. However,
if students understand the relationships involved, they will have a solid grasp of
place value and decomposition/recomposition and will find this algorithm very
useful.

The application of the standard algorithm is more difficult when the minuend
contains one or more zeroes. Teachers and students alike agree that in these sit-
uations the standard algorithm is confusing and hard to use! The regrouping
process involves many steps and requires that students understand the relation-
ships between larger place values. Let’s take a look at 5009 — 836.

9
41910

3099

- 836

4173

When we decompose the number 5009 into place values, there are no tens or
hundreds to regroup in different ways. This means that we must decompose the
5000 into 4000 + 1000 and regroup the 1000 as 10 hundreds. This is shown in
the algorithm by crossing out the 5 (5 thousand), replacing it with a 4 (4 thou-
sand) and putting a 10 over the hundreds to indicate the regrouping of 1000 as
10 hundreds. Then we decompose the 10 hundreds into 900 + 100 and regroup
the 100 as 10 tens. Using symbols, this is recorded by crossing out the 10 above
the hundreds place and writing a 9 (9 hundred) and placing a 10 above the tens
place (10 tens). Finally, we are ready to subtract place by place (9 — 6 ones, 10 —
3 tens, 9 — 8 hundreds, and 4 — 0 thousands).

Whereas the standard algorithm can be quite efficient, some students find it
easier to use compensation when subtraction involves numerous zeroes in the
minuend. For example, subtract 9 from both numbers (5009 — 9 and 836 — 9).
The equivalent subtraction problem of 5000 — 827 can be solved in a variety of
ways. Using Kenley's “adding on” method, students might count on from 827
starting at the ones place (827 = 3 + 70 + 100 + 4000). Or they might add
173 to both numbers (5000 + 173 = 5173, 837 + 173 =1000) and perform the
simpler calculation, 5173 — 1000 = 4173. Take a minute and think about what
students need to understand in order to be able to use a variety of solution
methods. A
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Activity
A 4 4 Analyzing Students’ Thinking, Multiplication

Objective: learn some common multiplication strategies.

Examine the following examples of students’ procedures for solving the same
two multiplication problems. What did each student do to obtain a correct an-
swer? Why does the student’s algorithm work?

! Sasha Emily
12x13
12 43 10x13= 130
x 13 X 62 2Xx13= 26
6 6 156
30 80
20 180 43 x 62
+100 +2400 20x 62 = 1240
156 2666 20x 62 = 1240
3x62= 186
2666
Tabitha
1 2 X 4 3 X
0 0 2 1 6
' 2
1 2 4 8
0 0 0 0
3 2
1 3 6 6 8 6
5 6 6 6
12x13=156 43 x 62 = 2666

Things to Think About

Sasha’s algorithm, the partial product algorithm, is often taught to help students
understand the steps in a multiplication problem prior to learning the standard
multiplication algorithm. To solve 12 X 13, Sasha decomposed both numbers into
tens and ones—(10 + 2) X (10 + 3)—and completed four multiplications (3 X 2,
3X10,2X 10, and 10 X 10) to obtain partial products. He then added these par-
tial products together to obtain the answer. The partial product algorithm works
because of the distributive property: 12 X 13 is equivalent to 12 X (10 + 3),
which is also equivalent to (10 + 2) X (10 + 3). Students revisit this application of
the distributive property in algebra (where it is known as the “foil method”) when
they multiply polynomials such as (x + 3)(x + 2). The partial product algorithm is
sometimes presented using a rectangular array to help students visualize multipli-
cation in terms of the area of a region. A rectangle with the length and width of
the factors in the multiplication problem (12 by 13, in this case) is first con-
structed on graph paper. Each side is partitioned into tens and ones. Lines are
drawn to show the different regions, and the area of each region is determined.
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These areas are then added together. (Base ten blocks—hundreds, tens, and
ones—can be used to fill in the regions to represent the areas concretely.)

12
10 + 2
, <1 10x10=100
10 «——— 2x10=20
13 + 3x10=30
///// 2x3=6
///
3 -~ 100+20+30+6=156
|

Try the rectangular array approach with Sasha’s second problem, 43 X 62. One
side of the 43 by 62 rectangle can be marked to show 40 + 3,0r 10 + 10 + 10 +
10 + 3. The other side can be marked to show 60 + 2, or 10 + 10 + 10 + 10 +

10 + 10 + 2.
62 62
60 2 10 10 10 10 10 102
10
I 10
43< 40 43 <
': 10
10
3 - 3

Emily broke down 12 x 13 into computations simple enough to do in her
head. She used a method similar to the partial product algorithm in that she
found some partial products and then added. Her method also relies on the dis-
tributive property, distributing 13 across the 10 and the 2: (13 X 10) + (13 X 2).
12 <13 s+ 1013 130 = 2%13-26 = 130 + 26 =156

Emily's solution to 43 x 62 again uses the distributive property, but in order to
keep the calculations easy enough to do in her head she first thought of 43 as
(20 + 20 + 3) and then calculated the partial products of each of these multiplied
by 62. Since there were many steps in this calculation, she jotted them down:

20x 62 1240
20x 62 — 1240
3x62 - 186
1240 + 1240 + 186 2666

Notice that the individual procedures produce individual partial products, which
are then added to find the final product. Clearly, Emily understands what happens
when one multiplies and is ready to learn a quicker, more efficient algorithm.
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Tabitha used the /attice method of multiplication. It is an alternative algorithm
students almost never invent on their own; it is taught because analyzing it can help
students make sense of the role of regrouping in multidigit multiplication. To multi-
ply 43 X 62, Tabitha wrote the two factors, 43 and 62, above and to the right of the
lattice and recorded partial products in cells with the tens value above the diagonal
line and the ones value below the diagonal line (see 3 X 6 and 3 X 2 in the figure on
page 49). After she had done this for 4 X 6 and 4 X 2 as well, she extended the di-
agonal lines and added the numbers in each diagonal. If the sum in a diagonal was

. greater than 9 (such as the second diagonal from the right), she regrouped the
10 tens as 1 hundred into the next diagonal to the left. The final product is read
starting from the left side of the lattice. The product of 43 X 62 is 2666.

Why does the lattice method of multiplication work? While it looks very differ-
ent, this algorithm is similar to the standard multiplication algorithm. The number
43 is multiplied by 2 (the bottom row) and by 60 (the top row) for a total of
62 times. While it appears that you are only multiplying by 6, notice how the num-
bers in the cells in the top row are all shifted over one place because of the diago-
nals. This has the effect of placing the numbers in positions that represent
multiplication by 60, not 6. In the standard multiplication algorithm we also shift
the placement of digits (often using a zero as a place holder) in order to represent
multiplying by 60:

43
x 62

86
2580 « shift over or place a 0 in the ones place
2666

One feature of the lattice algorithm that makes it especially appealing to some
students is that multiplication and addition within the algorithm are kept sepa-
rate. Basic facts are used to fill the cells but adding only occurs when determin-
ing the sums of the diagonals. A

Activity -
W VW  Analyzing Students’ Thinking, Division
7 Objective: learn some common division strategies.

Examine the following examples of students’ procedures for solving division
problems. What did each student do to obtain a correct answer? Why does the
student’s algorithm work?

Doug Nancy Madelaine

137 r 4 137 r4 500 + 5 =100
57689 51689 100 + 5= 20
— 500 (100 * 5 5 50+5= 10
189 18 30+-5= 6
50| 105 15 9+5= 1r4
139 39 689 +5=137r4
50 105 35

89 4

50| 105

39

35 75

4 137 «5
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Things to Think About

Doug’s method is sometimes referred to as the scaffold algorithm, which uses
repeated subtraction to find quotients. For example, in 689 + 5, multiples of 5
are subtracted successively until a remainder less than 5 is obtained. Doug was
able to calculate the products of 5 times 100 and 5 times 10 mentally. He then
subtracted these amounts from the quotient. Doug was unclear on how many
groups of 5 he could subtract at a time so he repeatedly subtracted 10 groups of
5, or 50. Another student solving this problem using the same algorithm might

’ estimate first and subtract out the 30 groups of 5 at one time:

51689

500 | 1005
189

150 305
39

35 75

137 ¢ 5

While this algorithm can be somewhat slow and cumbersome, accuracy is
fairly high. Furthermore, this method is faster if an individual uses estimation to
remove multiples of the divisor. (The algorithm can help students improve their
estimation skills, since a teacher can highlight the relationship between the divi-
sor, partial quotient, and subtracted amount.)

Nancy used the standard long division algorithm to find the quotient. She has
learned the four steps in this algorithm: estimate, multiply, subtract, and bring
down. But what is happening in each of these steps, and why does the standard
algorithm work? When Nancy estimated the number of groups of 5 she could re-
move from 6 (1), she actually estimated the number of 5s she could remove from
600 (100) but suppressed the zeroes in the quotient and in the dividend. She
then multiplied the 5 and the 1 to obtain the amount she would subtract. Since
she had suppressed the zeroes, she simply brought down the next digit (the 8) as
if she had subtracted zero:

1 = 100
51689 5)689
S 500
18 189

In the next step, in which she estimated the number of Ss in 18 (3}, she really
estimated the number of 5s in 189 (30}, but she again suppressed the zero and
ignored the 9 (ones):

13 = 130
5I689 51689
5 500
18 189
15 150
3 39
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When she finally brought down the 9 and estimated the number of 5s in 39, she
recorded that seven 5s can be subtracted from 39 with 4 left over:

137 r 4
5]689

5

18

15

‘ 39
35

4

After students have made sense of the scaffold algorithm, in which hundreds
of 5s and tens of 5s are subtracted, they often have no trouble understanding
the steps in the standard tong division algorithm. They can explain what is hap-
pening and why we can use the shortened version. Students often become much
more proficient at long division when they understand why it works.

Madelaine used the distributive property to distribute the division across many
subtraction substeps. She subtracted numbers from 689 that were divisible by 5
and recorded the results in a linear fashion. For example, she first subtracted 500
from 689 since 500 is divisible by 5. She then continued by subtracting 100 from
689 (since 500 + 100 = 600} and dividing it by 5. She then subtracted multiples
of 10 that were divisible by 5 (50 and then 30}, and finally a group of ones. Like
Doug, she could have subtracted different amounts that also were divisible by 5
to obtain the correct answer. Madelaine’s invented method is based on her un-
derstanding that she can decompose 689 and that it is most efficient first to con-
sider the number of hundreds that can be subtracted, then the tens, and finally
the ones. Use Madelaine’s method to divide 378 by 3.

Division algorithms are not used all that often in today’'s world. We may use
division when we calculate our gasoline mileage or when we eat out with friends
and divide the bill evenly. Most of the division we do involves small dividends and
single-digit divisors. For more complicated division problems, we reach for the
calculator. When using a calculator, however, students should have a ballpark es-
timate in mind as a check that they have selected keys correctly. And they need
to be able to do divisions with paper and pencil. However, practicing long division
algorithms with large divisors and even larger dividends has limited value. Much
more important is providing students with opportunities to make sense of divi-
sion situations and procedures. A

Teaching Computation

One reason algorithms were invented and codified is so that we can compute accu-
rately and efficiently without having to expend a great deal of mental energy. Yet
which algorithm or procedure we use depends on the level of precision needed and
whether we are computing mentally or with paper and pencil. (Calculators and com-
puters use programmed algorithms and are by definition quick and accurate.) Stu-
dents need to understand a variety of approaches to solving problems in order to
choose the most appropriate method based on the numbers involved and the com-
plexity of the procedure.
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Another factor that affects our choice of algorithms or procedures involves the
context of the problem. The context indicates whether we need an accurate answer
or if an approximate value will suffice. Sometimes an accurate answer isn’t necessary.
For example, when checking to see whether we have enough cash for the groceries in
our cart we might adjust prices up ($1.89 to $2.00) but not bother to compensate
later by subtracting the added amount (11¢) from the final sum. However, when a
situation requires a precise answer, we will want to choose a solution method that
guarantees accuracy.

Students’ facility with the different operations and algorithms develops slowly
over time. With experience they become flexible in using a variety of procedures and
algorithms based on the numbers in the computations. They also learn to apply their
knowledge of contexts to determine when an exact answer is required and when an
estimate will suffice. As they progress through the grades, students learn a variety of
algorithms for performing computations with rational numbers and integers quickly
and easily. Ideally they will understand how the mathematical properties they are
familiar with are used with all numbers and how these new algorithms are related to
ones they have already encountered.

Questions for Discussion

1. Explain how understanding mathematical properties helps students com-
pute mentally or make sense of operations.

2. A number of commercially available mathematics curriculums are designed
so that students invent addition and subtraction algorithms. Why is this
considered important?

3. Should students be taught more than one algorithm for an operation?
Should all students know the “standard algorithms”? Explain.

4. What might a teacher do when a child explains a procedure for solving
a problem but no one in the class seems to understand it, not even the
teacher?
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