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uppose that a student comes to algebra class eager
to share with her teacher and her classmates the
following problem and its “amazing outcome.” She
leads the class through this set of steps:

Choose any three-digit number whose leading
digit is not zero.

Double the number.

Add 5.

Multiply by 50.

Add your age.

Add 365.

Subtract 615.

She then asks, “What do you notice about your new
number?”

To each student’s surprise, the result of perform-
ing this procedure is a five-digit number whose first
three digits are the original three-digit number cho-
sen and whose last two digits are the student’s age.
As students begin to realize that a similar result
occurred for all students in the class, regardless of
their initial choice of a three-digit number and the
differences in their ages, the students’ curiosity
may be piqued and they may be motivated to inves-
tigate the mathematical ideas underlying this
“amazing outcome.” Students may begin to ask
such important mathematical questions as, Does
this outcome always occur? Why does this proce-
dure produce a similar outcome regardless of the
choice of three-digit number and age? Is it magic or
is it mathematics at work?

REASONING AND PROOF IN ALGEBRA

Principles and Standards for School Mathematics
(NCTM 2000) advocates that all students develop
an understanding of the important roles that rea-
soning and proof play in mathematics. The Reason-
ing and Proof Standard suggests that students in
the middle grades should “examine patterns and
structures to detect regularities; formulate general-
izations and conjectures about observed regulari-

ties; evaluate conjectures; and construct and evalu-
ate mathematical arguments” (NCTM 2000, p. 262).
It also indicates that high school students should
have experiences with mathematical situations
involving reasoning and proof that help them learn
to “abstract and codify their observations” (NCTM
2000, p. 344) to prove that conjectures made from
specific examples are true or to verify that some-
thing is impossible.

Situations such as the “amazing outcome” prob-
lem offer students opportunities to detect patterns,
formulate conjectures, and construct simple alge-
braic proofs. First, within each student’s solution, a
relationship exists among the original three-digit
number chosen, the student’s age, and the five-digit
number that is the result of executing this proce-
dure. Then as students share their “amazing out-
come” with one another, they discover that the
same pattern identified within their specific case
holds for all students in the class. From this
observed pattern, students can formulate a conjec-
ture that they can test by repeating the procedure
with additional choices for the original three-digit
number and the age. Accumulating many cases in
which the conjecture is true gives students growing
confidence that their conjecture is correct.

But questions left unanswered, even after stu-
dents try many examples, are, Does this amazing
outcome always occur? and Is our conjecture always
true? Although students may generate many
numerical cases, identifying and testing all possible
cases are not feasible, even though a finite number
of three-digit numbers and a limited number of rea-
sonable ages can be used. And unless all possible
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cases are tested, the possibility that there is an
exception to the rule or a case where the conjecture
is not true always exists. Why does this amazing
outcome occur? is an additional question that is
open to further exploration. Through experiencing
situations and attempting to answer questions such
as these, algebra students come to recognize the
need for and power of a general proof.

MOVING FROM CONJECTURES
TO PROOFS

The “amazing outcome” problem involves the choice
of two numbers: a three-digit number and an age.
The conjecture formed is that the resulting five-
digit number has a particular construction—the
first three digits are the chosen three-digit number,
and the last two digits are the student’s age.
Although students developed and confirmed this
conjecture by using numerical examples, answering
the question, Is it always true? requires a proof to
ensure that this conjecture holds for all choices of
three-digit numbers and ages. In addition, a proof
has the potential to provide insight into the under-
lying mathematical structure of this “amazing out-
come,” revealing information that may have
remained hidden or undetected when students
worked only with specific numerical values. Thus,
explaining the observed patterns and developing
deeper mathematical understanding are positive
outcomes of producing a proof (Knuth 2002).

Choosing appropriate algebraic notation is an
important initial step in generating a proof of the
conjecture. Instead of choosing specific numerical
values for the three-digit number and the age, prov-
ing that the conjecture is true for all numbers
requires employing variables to represent general
cases. The use of a variable in this proof serves a
different purpose than using a variable to represent
an unknown numerical value for which an equation
such as 2x + 3 = 15 can be solved. In a proof, vari-
ables represent all elements in a particular set. The
variable n here represents the elements of the set
of three-digit numbers whose leading digit is not 0,
and the variable a represents the elements of the
set of two-digit numbers used to represent the age.

The second step in creating a proof of our conjec-
ture is to apply each step in the procedure with the
variables n and a. When possible, we simplify the
algebraic expressions by using properties of addi-
tion and multiplication. The outcome, shown in fig-
ure 1, is an algebraic expression in terms of the
two variables, n and a.

The outcome of this procedure, 100n + a, shows
that the original three-digit number, n, is multi-
plied by 100, creating a five-digit number with
zeros as the last two digits. Adding a two-digit
number, a, to this multiple of 100 yields a number
of the expected form.
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Choose any

three-digit number. n

Double the number. 2n

Add 5. 2n+5

Multiply by 50. 50(2n + 5) = 100n + 250

Add your age. 1007 + 250 + @

Add 365. 1007 + 250 + a + 365
=100n + a + 615

Subtract 615. 100n +a + 615 - 615

=100n + a
Fig. 1

Once students identify the underlying mathe-
matical structure and understand how the proce-
dure has been constructed to achieve this amazing
outcome, the problem situation can be extended in
several ways. The teacher can challenge students to
investigate whether similar results occur if the ini-
tial number chosen is a four-digit number or a two-
digit number or how the number of digits in the age
affects the outcome. Students can then develop
appropriate notation and use the previous proof as
a model for proving their new conjectures. In addi-
tion, students can create their own “amazing out-
come” problems, in which they must pay close
attention to the results of applying properties of
addition and multiplication, the order of operations,
and the relationship of the operations to one anoth-
er. By engaging in such activities, students have
multiple opportunities to increase and solidify their
number sense.

CONJECTURES AND PROOFS
INVOLVING CONSECUTIVE NUMBERS

Algebra students can learn to form conjectures and
develop proofs to determine “Is it always true?”
with different types of numbers (for example, odd
and even numbers or consecutive integers) and dif-
ferent mathematical operations (addition, subtrac-
tion, multiplication, and division). Using consecu-
tive integers to form, test, and prove conjectures is
particularly appropriate for beginning algebra stu-
dents, since the choice of notation is relatively easy
to understand and since only basic algebraic skills
are required to produce the proofs.

The three tasks outlined subsequently involve
sums of consecutive positive integers. Each task
allows students to create and investigate several
numerical examples, form and test conjectures on
the basis of these numerical examples, and prove
their conjectures. Students can then look across the
three tasks to form, test, and prove further conjec-
tures. A powerful extension of these tasks is also
provided; it will challenge and engage most high
school algebra students. Martinez-Cruz and
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What

can we
conjecture
about the
sum of n
consecutive
positive
integers?

Contreras (2002) present similar activities involv-
ing the products of consecutive integers.

Task 1:
What can be conjectured about the sum of any
three consecutive positive integers?

Beginning algebra students can easily choose sever-
al sets of three consecutive positive integers and
determine their sum.

1+2+3=6
2+3+4=9
3+4+5=12
10+11+12=33
24 +25+26="T5
49 + 50 + 51 =150

If students have previous experiences forming
conjectures related to odd and even numbers, they
first may look to see whether the sum of three con-
secutive positive integers is always odd or always
even. As the preceding numerical examples show,
the sum is odd at times and even at other times.
Students can form a conjecture about the oddness
or evenness of the sum of any three consecutive
positive integers, but it must be stated using two
distinct cases: the sum is even if the smallest (or
largest) of the three consecutive positive integers is
odd, and the sum is odd if the smallest (or largest)
of the three consecutive positive integers is even.

In my experience, beginning algebra students
quickly observe another pattern and conjecture
that the sum of any three consecutive positive inte-
gers is a multiple of 3. This conjecture can be
proved by choosing appropriate notation and repre-
senting the generalized sum, as follows:

Let p represent any positive integer.

The next two consecutive positive integers are
represented by p + 1 and p + 2.

The sum of the three consecutive positive inte-
gersisp+(p+1)+(p+2).

Simplifying the sum yields 3p + 3.

Using the distributive property, rewrite the sum
as3(p + 1).

Since 3 is a factor of the sum of three consecutive
positive integers, the sum is a multiple of 3.

The proof is concise but complete; we have deter-
mined that the conjecture is always true.

By examining numerical examples, students may
form two additional conjectures, which can be
explained by using the previous proof, about the
sum of any three consecutive positive integers.
First, the middle of the three consecutive positive
integers, p + 1, is always a factor of the sum. Sec-
ond, the sum of the three consecutive positive inte-
gers is always three times the middle number.

Task 2:
What can be conjectured about the sum of any
five consecutive positive integers?

Once again, students may begin to explore this sit-
uation by creating numerical examples:

1+2+3+4+5=15
2+3+4+5+6=20
8+9+10+11+12=50
25 +26 +27+28 +29=135

These numerical results lead to the conjecture that
the sum of five consecutive positive integers is a
multiple of 5. A proof, very similar to the preceding
one, follows:

Let p represent any positive integer.

The next four consecutive positive integers are
representedbyp + 1,p +2,p + 3, and p + 4.

The sum of the five consecutive positive integers is

p+(p+D+(p+2)+(p+3)+(p+4).

Simplifying the sum yields 5p + 10.

Using the distributive property, write the sum as
5(p +2).

Since 5 is a factor of the sum of five consecutive
positive integers, the sum is a multiple of 5.

Again, the middle number, p + 2, is also a factor of
the sum; and the sum of five consecutive positive
integers is five times the middle number.

Task 3:
What can be conjectured about the sum of any
seven consecutive positive integers?

Noticing that task 3 has a structure that is similar
to those of tasks 1 and 2, students may decide to
form and prove a conjecture without creating any
numerical examples. Stating that the sum of any
seven consecutive positive integers is a multiple of
7 is a reasonable conjecture. Using the notation and
structure of the previous proofs, we find that the
conjecture is always true, since the sum is 7p + 21,
or 7(p + 3). Additional conjectures are that the mid-
dle number is a factor of the sum and that the sum
is seven times the middle number. Again, the
results of the proof show that these two additional
conjectures are also true.

LOOKING ACROSS TASKS TO FORM
NEW CONJECTURES

By now, a pattern that occurs across these three
tasks emerges and serves as the basis for new con-
jectures. Thus far, we have proved that—

* the sum of three consecutive positive integers is
a multiple of 3,
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* the sum of five consecutive positive integers is a
multiple of 5, and

* the sum of seven consecutive positive integers is
a multiple of 7.

The observed pattern in these conjectures first
leads us to the question, What can we conjecture
about the sum of n consecutive positive integers?
and then to the conjecture that the sum of n consec-
utive positive integers is a multiple of n. We must
test and prove this conjecture to answer the ques-
tion, “Is it always true?”

One way to begin testing this conjecture is to
consider additional values of n. For n = 4, a numeri-
cal example, 1+ 2 + 3 + 4 = 10, provides a counter-
example, thereby proving that the conjecture is not
true, since 10 is not a multiple of 4. Applying the
notation and procedure illustrated in the previous
tasks yields an explanation of why the sum of four
consecutive positive integers is not a multiple of 4
for any choice of four consecutive positive integers
(that is, the sum 4p + 6 is not a multiple of 4
because 4 is not a factor of 4p + 6). Similarly, the
conjecture is not true for n = 6, since the sum 6p +
15 is not a multiple of 6.

But students may notice another pattern that is
based on the results of the previous investigation,
and they may form a revised conjecture. Although
the initial conjecture, the sum of n consecutive posi-
tive integers is a multiple of n, is not true for all n,
it was proved true for n = 3, 5, and 7 and not true
for n =4 and n = 6. Two possible revised conjectures,
each of which contains two cases, are—

1. The sum of n consecutive positive integers is a
multiple of n when 7 is prime, and it is not a mul-
tiple of n when n is composite.

2. The sum of n consecutive positive integers is a
multiple of n when n is odd, and it is not a multi-
ple of n when n is even.

Investigating the case when n = 9 tests both
these conjectures, since 9 is both a composite
number and an odd number. The notation and
procedure illustrated in the preceding tasks indi-
cate that the sum of nine consecutive positive
numbers is 9p + 36 = 9(p + 4). Since 9 is a factor
of the sum, the sum is a multiple of 9. Therefore,
we reject the first revised conjecture, whereas the
second revised conjecture has passed the test, al-
though it still has not been proved. Likewise, the
case of n = 2, a prime number and an even num-
ber, can be used to test these two conjectures. Since
the sum of any two consecutive numbers is odd and
therefore not a multiple of 2, the first conjecture is
again rejected, whereas the second conjecture ap-
pears to be true.
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The proof of the second revised conjecture
requires using two variables and may challenge
beginning algebra students. But students with
stronger algebraic skills should be able to partici-
pate in a teacher-led classroom discussion that
results in creating the proof of this conjecture.
The proof depends on representing the sum of the
consecutive numbers from 1 to (n — 1) as

nn-1),
2 b

thus, teachers may want students to explore this
relationship before they encounter it within the
following proof:

Let n represent the number of consecutive posi-
tive integers.

Let p represent any positive integer. The addi-
tional consecutive positive integers are repre-
sented by

p+1Lp+2,p+3, ...,

p+m=-3),p+n-2),p+m-1).

The sum of the n consecutive positive integers is

p+(p+D+(p+2)+(p+3)+---

+(p+M=-3))+(p+(n-2)+(p+m-1).

Simplifying the sum of the n consecutive positive
integers yields the expression

np+[1+2+3+-+(n-3)+(n-2)+(m-1).

Since the sum of the consecutive integers from 1
to(n—-1)is

nn-1)
2 )

the sum of n consecutive positive integers can
be written as

np + n(n2— 1).
Use the distributive property to rewrite the sum
as
n {p U 5 1) }
If
(n-1)
2

is an integer, then n is a factor of the sum and
the sum is a multiple of n. To determine
whether

(n-1)
2

is an integer, consider two cases: when n is
odd and when 7 is even.
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Case 1: When n is odd, (n — 1) is even, and there-
fore (n — 1) is divisible by 2. So

(n-1)
2

is an integer when n is odd, n is a factor of the
sum, and the sum is a multiple of n.

Case 2: When n is even, (n — 1) is odd, and there-
fore (n — 1) is not divisible by 2. So n is not a
factor of the sum, and the sum is not a multi-
ple of n when n is even.

Thus, we have completed a proof of the second
revised conjecture.

CONCLUDING REMARKS

Students and teachers often associate the construc-
tion of proofs with the study of geometry and mea-
surement. But opportunities abound for students to
form conjectures and develop proofs in other math-
ematics content areas, as well. The problem situa-
tions presented in this article illustrate how alge-

bra students can detect patterns and form conjec-
tures that are based on their understanding of
whole numbers and operations. In constructing
algebraic proofs, students see the crucial connec-
tions between whole-number operations and alge-
bra, learn the power of using a variable to repre-
sent all numbers of a particular type, perform
generalized arithmetic, and arrive at conclusions
from which they can proclaim with confidence and
understanding, “Yes, it’s always true.”
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