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Abstract

In this article we will only touch on a few tiny parts of the fiebf linear Dio-
phantine equations. Some of the tools introduced, howexitthe useful in many
other parts of the subject.

1 Whole Numbers

In number theory, we are usually concerned with the propemif the integers, or
whole numbersZ = {...,-3,-2,-1,0,1,2,3,...}. Letus begin with a very simple
problem that should be familiar to anyone who has studietheteary algebra.

e Suppose that dolls sell f@rdollars each, and toy train sets sell i&rdollars. A store
sells 25 total dolls and train sets, and the total amountvedés 208 dollars. How
many of each were sold?

The standard solution is straight-forward: Lebe the number of dolls ang be the
number of train sets. Then we have two equations and two wmksio

z+y = 25
Tx+18y = 208

The equations above can be solved in many ways, but perhapasiest is to note that
the first one can be converted to= 25 — y and then that value af is substituted into
the other equation and solved:

7(25—y)+ 18y = 208
175 =7y +18y = 208
—T7y+18y = 208 —175
11y = 33
y = 3

Then if we substitutey = 3 into either of the original equations, we obtain= 22,
and it is easy to check that those values satisfy the comgitiothe original problem.
Now let’s look at a more interesting problem:

e Suppose that dolls sell fardollars each, and toy train sets sell i&dollars. A store
sells only dolls and train sets, and the total amount redé&208 dollars. How many
of each were sold?



This time there is only one equation: + 18y = 208. We probably learned in algebra
class that you need as many equations as unknowns to solvkem®like this, so at
first it seems hopeless, but there is one additional key miEicdormation: the number
of dolls and the number of train sets mustrioa-negative whole numbers. With that in
mind, let’s see what we can do, ignoring for the moment thetfaat we already have
a solution, namelyz = 22 andy = 3.

Beginning from our original equation, we can do this:

Tr = 208 — 18y
208 — 18y 5— 4y
= —==29-2 .
v 7 vt
At first, this seems like we haven’t made any progress, but@dhat sincey has to be
an integer, the value d29 — 2y) is a whole number, so also the fractith— 4y)/7
also has to be a whole number. Let’s calkjtand then do some arithmetic with the

resulting equation:

5 —4dy

a =
7

7Ta = 5—-4y
4y = 5—-"Ta

5—"Ta 1 +1—3a

= = — Qa .

Y 4 4

As before, we still don’t have a solution, but things looktbetn a sense: the denomi-
nator in the fraction is smaller: it is nowinstead of7. As before, since we know that
a is a whole number, we know that— a is a whole number, and therefare— 3a)/4
must be a whole number which we will calland we’ll again repeat the same sort of
algebraic manipulations:

1—-3a
b =
4
4 = 1-3a
3¢ = 1-—4b
o = 4, 1-h
B 3 3

The same reasoning as before tells us that b)/3 must be a whole number, so we
callit c:

1-0
c = —
3
3c = 1-b
b = 1-3c

Now we've actually made some progress. No maitiest integer value: takes,b will
be an integer! Let's substitute that valuebdfack into the previous equation:
_1—4b 1-4(1-3c) —3+12c

3 3 = 3 =—1+4c.

a



Now substitute this value af to obtainy:

571 5-T(-14+4c) 12-28¢

1 1 = 1 =3—-"Tec.

Y

Finally, we can substitute this value ginto the original equation to obtair

20818y 208 18(3—Tc) _ 154+ 126c

= =22+ 18ec.
- - 1 + 18¢

Our solution looks a little different from what we obtainedhe first problem, but here
itis:

r = 224 18¢
= 3—-"Tc

If ¢ = 0 we obtain the same solution we did previousty= 22 andy = 3, but note
thatany integer value ot will yield another solution. We can see that positive values
of ¢ will yield negative values of;, but if c = —1, we obtain another solution: = 4
andy = 10. It's easy to check that bottx, y) pairs are valid solutions to the original
problem. Ifc is smaller,—2 or less, then the values become negative, so there are no
additional solutions.

When an equation of this sort is solvable by this methodgtigno limit to the number

of steps that need to be taken to obtain the solution. In taengie above, we needed
to introduce integers, b andc, but other equations might require more or fewer of
these intermediate values.

2 Linear Diophantine Equations

What we have just solved is known as a Diophantine equatiom eqaation whose
roots are required to be integers. Probably the most faménsh@ntine equation is
the one representing Fermat's last theorem, finally prowedtreds of years after it
was proposed by Andrew Wiles:

If n > 2, there are no non-trivikolutions in integers to the equation:

There are many, many forms of Diophantine equations, buatgaps of the sort that
we just solved are called “linear Diophantine equationdl:ttee coefficients of the
variables are integers.

Let’s look a little more closely at the equation we just sdlver + 18y = 208. If the
only requirementwere that the roots be integers (not nadésson-negative integers),
then our solutionz = 22 + 18c andy = 3 — 7c represent an infinte set of solutions,
where every different integer value efjenerates another solution.

1The “trivial” solutions are those wheteor y is zero.



A more geometric view of the problem is this: If we were to drdipe equatiorvz +
18y = 208, the solutions are places where the graph passes througts ploat have
integer coordinates. In Figure 1 a portion of that line istield, and the points where
the graph has integer coordinates are indicated and labeled

(-32,24)

(-14,17)

4,10)

(
\@
\‘@

Figure 1: Graph ofz + 18y = 208

Notice that all the points with integer coordinates are vepaced along the line.
In fact, if we begin at any point and ad@ to thez-coordinate and at the same time
subtractr from they-coordinate, we arrive at another point on the graph witagat
coordinates. A quick examination of the original equatibaidd make it obvious why
this is the case. The equationis:

Tz + 18y = 208.

If we add18 to thex value, we increase the left side By 18. If we subtract? from
they value, we decrease the left side by the same amd@ént7. The net effect is to
leave the left side unchanged.

Notice that this line has a negative slope and happens tthhauigh the first quadrant
(quadrant I) and intersect some points with integer coatéimthere. This may or may
not be the case for the graphs of other linear Diophantinaténs. Lines with positive
slopes can have an infinite number of solutions where botipasiive, and there are
equations where there are none. It's easy to construct sygdtions with whatever
characteristics you wish.

Does every equation of the form:
ax + by = c,

whereq, b andc are integers have a solutidn, ), wherex andy are also integers?
The answer is no. For example, whatifindb are even and is odd? The left side
must be even, and if the right side is odd, there is no pofsilnf a solution with
integer values. Similarly, i: andb are both multiples o8 andc is not, the left side
will be a multiple of3 and the right side is not, so again, there are no possiblgente
solutions.

In fact, if the greatest common divisor (GCD) @fandb does not divide:, then there
are no integer solutions. The amazing thing, however, istiiee GCD ofa andb also



dividesc, then there are an infinite number of integer solutions, aadwil see why
that is the case later on.

Note also that another observation we made about our pktipuoblem will also
apply to a general linear Diophantine equation; namelyt ithéx,y) is an integer
solution to:

ax+by=-c

then so will be(z + bk, y — ak) wherek is any integer. If we substitute + bk for «
andy — ak for y, we obtain:

a(z + bk) + b(y — ak)

ax + abk + by — abk

axr+by = g,

|
o

Il
o

so if (z,y) is a solution, then so also {g + bk, y — ak).

3 Reducing Fractions

Now we will jump to a problem that at first glance is totally atated to linear Dio-
phantine equations, but will turn out to be very similar. 't détegin with a very ugly
problem:

Reduce the following fraction to lowest terms:

179703941
215237573

Recall that to reduce a fraction to lowest terms, you seaschdmbers that are com-
mon factors of the numerator and denominator and if such eusrdxist, the fraction
can be simplified by dividing both numerator and denominbjothat common num-
ber. For example, in the fractiot8/66 both the numerator and denominator have a

factor of6, so we have:
48 6-8 8

66 6-11 11
It's easy to check that th&and11 in the fraction8 /11 have no other integer common
factors, sa/11 is reduced to its simplest possible form.

With a computer, or with a heck of a lot of effort by hand or ewdgth a calculator,
we can search for common factors of the numerator and demdoniof our original
problem, but that could require a great amount of effort.alet,fyou will need to test
hundreds of possible factors before you arrive at the faligw

179703941 185071 - 971 971

215237573 185071-1163 1163’

and even then, a bit more work must be done to assure9tiaand 1163 have no
common factors.



What we would like to do is have a method to find the GCD (grea&@msmon divisor)
of the numerator and denominator, and then eliminate ttam fthe numerator and
denominator, yielding the fraction reduced to simplestrfor

Let’s try the following approach, which, except for someghktly ugly arithmetic,
should seem quite familiar:

215237573 = 179703941 - 1 + 35533632.

Notice that if some number does divid&5237573 and 179703941 then it must also
divide 35533632. That means that:

GCD(215237573,179703941) = GCD(179703941, 35533632).

Thus we have reduced the size of the numbers in our problem.
We can continue in the same way:

179703941 = 355336325+ 2035781
35533632 = 203578117 + 925355
2035781 = 925355-2+ 185071
925355 = 185071-5+0.

In every case, any number that divides the two leftmost nusibehe equations above
must also divide the rightmost, and in the final line, we obse¢hat185071 must be
the GCD of those numbers. Once we know th&s071 divides the numerator and
denominator and in fact is the largest number to do so, we taaedthe numerator
and denominator of our original fraction by that number ttadbthe form971/1163
as the simplest form.

This method to obtain the GCD of any two numbers is known aditEsi@lgorithm.

4 Euclid’s Algorithm and Diophantine Equations

Now let's use the Euclidean algorithm on two of the numbeosifthe original Dio-
phantine equation we solved in Sectiorn7t:+ 18y = 208.

18 = 7-2+4
7 = 4-1+3
= 3.1+1
= 1:340

In this example, the final number is so the GCD ofl8 and7 is 1 (in other words,

18 and7 are relatively prime), but the interesting thing to notehiattthe numbers in
the GCD calculationi8, 7,4, 3,1 are the same numbers that we got as denominators
and as the coefficients of the variables in the numeratoteifractions when we were
solving the Diophantine equatidfx + 18y = 208. The only oddball numbers were



the constants in the numerators, and that's not surprisignever used the number
208 when we were using the Euclidean algorithm to find the GCD8&adnd7. If you
check the arithmetic calculations that are being done ih ease, it will be clear why
the numbers generated in both examples must be the same.

Suppose that the original Diophantine equation had haidstead of th08. To make
sure you understand the technique we used to solve our Ditipkaequation it would
be a good exercise to solve the following equation by yofiksdbre reading on:

Tr+ 18y =1

Here’s the solution (but just the equations: the textualiargnts are omitted):

Tr+18y = 1
1— 18y 1—4y
= 7:_2
v 7 vt —
. — 1—4y
B 7
_ 1—7a__a+1—3a
vy = T4 = 1
1—3a
b =
4
o = =4, 10
B 3 3
. 1—-b
3
b = 1-3¢c

The nice thing about thé in place of the208 is that it remains constant throughout
the calculation, whereas tf288 was reduced as various of the denominators divided
it evenly. Inthis calculation, all the other coefficients are the same as timebeus
generated in the straight-forward calculation of the GCD ahd18.

To complete the solution, we need to back-substitutebthe 1 — 3¢ and after a few
steps we obtainz = —5 4+ 18c andy = 2 — 7¢, wherec is an arbitrary integer.
(Obviously this equation will have no solutions where bethndy are positive.)

Thus when you do a GCD calculation@&ndb, and that GCD turns out to de you've
done a lot of the work toward solving the Diophantine equatio

ax + by = 1.

So if we can do the Euclidean algorithm, we can find with alnmaséffort other than
a little arithmetic the coefficients we need to solve a lir@@phantine equation of the
form ax + by = 1. Of course we'd like to be able to solve equations whereltie
replaced by an arbitrary numberbut that is actually not too difficult.

As as example, let’s find solutions f@r: + 18y = 208 assuming that we've solved
7x 4+ 18y = 1. The solutions for the latter equation are= —5 + 18c andy = 2 — 7c,



wherec is an arbitrary integer. An easy solution is simply to set 0 and obtain

x = —5 andy = 2 as a particular solution. But if we multiply andy by 208, then the
left side will be increased by a factor 298 so if we increase the right side by the same
factor, we'll have ar(x, y) pair that satisfies our original equati@a + 18y = 208.

Thus a solution is thisx = —5 - 208 = —1040 andy = 2 - 208 = 416. It's easy to
plug these numbers in to check that they are valid.

But we also noticed that adding any multiplel&to x while at the same time adding
that same multiple of-7 to y will yield the other solutions, so the general solution to
our original problemisxz = —1040 + 18k andy = 416 — 7k. If k = 58, for example,
this yields the solution: = 4 andy = 10.

We have seen that if we have any solution to one of these IDieg@hantine equations,
we can obtain all the others by adding constant multiplee®bipposite coefficients to
the given solution, all we really need is one solution.

In the previous examples, once we got to the point where wé kad — 3¢, we back-
substituted and carefully kept track of the coefficient of the calculations. But since
any solution will generate all the others, why nottet= 0? Then we just need to track
a single number.

5 Putting It All Together

Let's use the techniques above, but in their most simplifeanf to solve another
Diophantine equation. Here’s the problem:

e In a pet shop, rats cost 5 dollars, guppies cost 3 dollars aokkets cost 10 cents.
One hundred animals are sold, and the total receipts ared@dsdi How many rats,
guppies and crickets were sold?

If r, g andc represent the number of rats, guppies and crickets, reéggkyctve’'ve got
two equations (but three unknowns):
r+g+c = 100
or+3g+.1c = 100

To turn the problem into a purely integer problem, multiglg second equation hiy:
r+g+c = 100
50r +30g+c¢ = 1000

If we subtract the first equation from the second we obtairfah@liar looking linear
Diophantine equation in two variables:

497 + 299 = 900.

Luckily, the GCD for49 and 29 is 1 which divides900 so there will be solutions
(although possibly not solutions where all the values aremegative.

(This problem is probably much easier to solve using “gueskcheck” techniques:
we know that the number of crickets must be a multiple of 10j@mocould just try 0,
10, 20, ..., 100 of them.)



Let’s find the GCD of49 and29, using the Euclidean algorithm:

49 = 29-1420
29 = 20-149
20 = 9-2+2
= 2441
1-2+0

Since we've used the variabtefor the number of crickets, angl for the number of
guppies, let’s use variablésj, k, et cetera for the integer values of fractions that we
get as we step through the solution of the Diophantine eguatiVe will a particular
solution to the simpler equation:

49r +29g =1

and then multiply bothr andg by 900 for a solution to the original problem.

Without doing any calculations, but just reading the vahigtsined from the Euclidean
algorithm used to calculate the GCD 4% and29 and the variables, j, k£ and! as
the integer values of fractions, we can just write down tHati@nships among them
(expressed both ways). For the purposes of finding a soltditime equation, only the
expressions on the right are important. Note how the nunibetse fractions (other
than thel, of course) are exactly the same as the numbers on the ldfeiexecution
of the Euclidean algorithm to find the GCD 4% and29 above.

T_1—299 1 —49r
19 9T T

. 1—=20r 1—29¢
1 = T =

29 20
C1-9i . 1-20j
j: 1 = —

20 9

1-2j 1-
k= jooy 1%k

9 2

1-k
l=—=  k=1-2
2

From the last line, clearly¢ = 2[ for arbitrary integers, so just sef = 0 to obtain a
particular solution. If = 0, thenk = 1. If K = 1 thenj = —4. If j = —4, theni = 9.
If i = 9thenr = —13. Andif r = —13, theng = 22.

It's easy to check our work; namely, that= —13 andg = 22 is a solution to:
49r +29g = 1.

To obtain a particular solution to the original equation ltiply by 900: » = —11700
andg = 19800. From previous considerations, we know that the generatisal to



the original equation will be:

—11700 + 29%
g = 19800 — 49k

r

We're looking for non-negative values ofandg, so divide29 into 11700 and we find
that if & = 404 we obtain the values = 16 andg = 4. If £ = 403 or k = 405, either
r Or g IS negative.

Since there aré00 total animals¢ = 80, and it's easy to check that= 16, ¢ = 4 and
¢ = 80 solves the problem.
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