CAMI Roadshow: NCTM 2016

CAMI celebrated its two year anniversary with a few founding CAMI members representing our teachers’ circle at this year’s regional NCTM conference in Philadelphia.

Our session began at 8 in the morning with a small but energetic and enthusiastic group of teachers from Maryland and New Jersey. We started with introductions and a brief introduction to CAMI including a discussion of the Diana Lambdin quote that went out with our initial invitation to CAMI in November 2014… Continue reading “CAMI Roadshow: NCTM 2016”

Dana’s Rectangle

Inspired by the work of the Navajo Math Circle, CAMI explores the area of rectangles and their borders, testing conjectures and making generalizations.

Eric started the meeting by talking about the Navajo Math Circles, which is a joint project of the Navajo Nation and mathematicians from Math Teachers Circle Network. A recent documentary tells the story. This meeting’s problem is from an article about the Navajo Math Circle (see Further Reading pdf link above) by Tatiana Shubin, whose video Grid Power was the subject of this past July’s CAMI meeting.

Continue reading “Dana’s Rectangle”

The Lawn Mower Problem

What happens when we let students write the questions?

Tyler opened the meeting by giving us a situation adapted from one he’d seen on Twitter posted by Fawn Nguyen. He then asked two questions: What do you notice? What do you wonder? Continue reading “The Lawn Mower Problem”

Grid Power

What mathematical questions can you ask of a blank piece of grid paper?

After CAMI was recently accepted as a member of the Math Teachers’ Circle Network, a few of us started exploring their resources, which include a series of videos of mathematicians leading teacher circles. Eric was inspired to share today’s problem after watching Tatiana Shubin’s Grid Power.

Eric started the meeting by asking participants to look at a blank piece of graph paper for 7 minutes and write down questions that came up. 7 minutes?! Yes, 7 minutes. Continue reading “Grid Power”

Making and Testing Conjectures: The Diagonal Problem

Draw a rectangle on grid paper and draw a diagonal. Is there a way to predict the number of squares the diagonal will pass through?

I have been thinking about MP3 from the Common Core, specifically about how to get students to make conjectures, to test those conjectures and to refine their conjectures when it turned out they were not always true. I was also thinking about student perseverance and helping them not get too frustrated. I’ve done some activities like Marilyn Burns’ consecutive sums problem (see additional resources below), but I want something that feels messier and a little more unwieldy. Continue reading “Making and Testing Conjectures: The Diagonal Problem”

Millions and Billions

I need your help visualizing millions and billions.

In a recent interview on Innovation Hub, the mathematician and educator Steven Strogatz reflected on math education (specifically the requirement for students to study algebra) and the level of number in the general public:

“We don’t do a very good job of teaching what you might think of as numeracy, that is, the use of arithmetic [in the real world]. So, here’s an example: In current political discussion, there is a lot of talk from Senator Sanders about millionaires and billionaires, right? Continue reading “Millions and Billions”

Resources from NCTM 2016

So many games, puzzles and problems from the NCTM annual meeting…

In April, along with some other CAMI members, Jane and Solange went to the National Council of Teachers of Mathematics (NCTM) annual meeting in San Francisco. In this meeting, they shared some of their favorite games, puzzles and problems from different workshops.

We started with the game Which Number is Closest? from Building Mathematical Thinking Through Number Games, by Linda Dacey and Jayne Bamford Lynch. We played a variation of the game where we each rolled a ten-sided die and then wrote down each number in the box of our choice. Continue reading “Resources from NCTM 2016”

Roller Derby (& probabilities in passing HSE exams)

April’s meeting was in two parts: First we played a dice game named Roller Derby, developing and analyzing game strategies. Then we discussed some of the odds of the TASC.

After introductions and a brief discussion of how we’ve each used dice in our classes in the past, Mark gave out a Roller Derby board – basically a sheet divided into twelve columns, numbered 1-12 – and twelve colored chips to each person and invited everyone to distribute their chips across their board any way they wanted.

Then he broke up the group into pairs, gave out a red and white die to each pair and gave out the rules: Continue reading “Roller Derby (& probabilities in passing HSE exams)”

CAMI Roadshow: COABE 2016

Facilitating a meeting in Dallas, while live-tweeting with teachers in NYC, we explored a visual pattern to model what our teachers’ circle is all about.

This CAMI Roadshow involved about 35 teachers in a ballroom at the Sheraton at the 2016 COABE conference and 3 additional teachers who were back in NYC, participating through Twitter.

We wanted to maximize teachers’ time working on the problem but we also wanted to convey some important norms about how we run CAMI meetings, so we began with an ice breaker. The instructions were simple. First, everyone sat down (including the facilitators). After that, the only goal was that there be 5 people standing and the only rule was we had to do it without talking. Continue reading “CAMI Roadshow: COABE 2016”